
COMFILE Technology

MSB624RA-DC User's Manual

www.ComfileTech.com

Thank you for your purchase from Comfile Technology Before making use of this product please be sure to read and observe all safety precautions.

Marning

- 1. For instruments with risk to life or property (e.g. nuclear power control, medical equipment, vehicles, railways, aviation, combustion equipment, recreation equipment, safety devices, etc.), always employ adequate fail-safe mechanisms.
 - Risk of fire, personal injury, and/or property damage.
- 2. Always mount to a panel.
- 3. Do not attempt to repair, inspect, or wire while power is applied.
- 4. Do not attempt to alter or repair. Refer to a qualified technician.
- 5. Confirm all electrical connections

Caution

- 1. Do not use outdoors.
- 2. Always use the product within its specifications and ratings. - Risk of fire and shortening of product's life.
- 3. Do not exceed ratings of relay switching contacts.
- 4. Does not use in environments with flammable or explosive materials, moisture, direct sunlight, radiation, vibration and/or shock.
- 5. Keep product free of dust and debris.
- 6. Make connections correctly and confirm polarity by measuring at the appropriate terminals.

► CE/KCC

This product is intended for small-scale automation, standalone applications suitable for a Cubloc controller.

♦ About the MSB Series

The Cubloc core module, in semiconductor form, can be mounted to a PCB. This is advantageous, as users can integrate the Cubloc into a custom PCB design in a manner that suits their taste.

However, to a user without PCB fabrication skills, a custom PCB design can be quite difficult. This user must also have the know-how to implement the necessary Input and output circuitry.

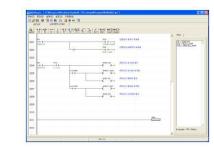
The MSB series was designed to make it easy for users to employ the Cubloc without having to have professional PCB fabrication technology and skills.

The MSB series can be installed in the field, have its input and output terminal blocks wired, and can be used just like existing PLCs.

MSB User's Manual Composition

For BASIC or Ladder Logic programming, please refer the Cubloc BASIC User's Manual.

This manual only covers those elements unique to the MSB612RA.


♦ CUBLOC STUDIO

To program the MSB series, CUBLOC STUDIO must be used. It can be downloaded from <u>www.ComfileTech.com</u> in the "Cubloc" Support section for free.

♦ MSB LOGIC

Originally, the MSB series could only be programmed with CUBLOC Studio, which supports both BASIC and Ladder Logic. However, some users are not familiar with BASIC and prefer to use Ladder Logic exclusively.

Therefore, we have created MSB LOGIC, a Ladder Logic development environment designed specifically for the MSB series. If you prefer to do your development in Ladder Logic, you can now use MSB LOGIC to program the MSB series industrial controllers.

It can be downloaded from www.ComfileTech.com in the "Cubloc" Support section for free.

MSB624RA-DC Specifications

The MSB6XX series has a core module equivalent to the Cubloc CB400.

- Program Memory : 200KB
- BASIC Data Memory : 6KB
 - Ladder Logic Data Memory : 1KB

 - -

 - RS232C Communication Port : 2
 - RS485 Communication Port: 1

 - Power: 24VDC
 - Ambient temperature : -30 to 75 °C
 - Humidity : 10% to 90%

♦ MSB Usage Declaration

Insert the following at the very beginning of your source code.

#include ``MSB6XX"

The RS-485 port (channel 3) is already opened with a default baud rate of 57600 by including MSB6XX (i.e. #include "MSB6XX"), so it is not necessary to use OpenCom. Please refer to the MSB6XX file in Cubloc Studio's installation folder. To change the baud rate, please use the set rs232 command.

Download Cable

If your PC has a built-in RS-232C (serial port), it can be used to download programs to the MSB624RA-DC. If not, a USB-to-serial (RS-232C) adapter can be used.

Note: The download cable is not included, and must be purchased separately.

If using a USB-to-Serial adapater, you must install the necessary drivers to your PC. After the driver is installed, the PC will assign it a COM port number (e.g. COM6). In Cubloc Studio's PC Interface Setup, select this COM port.

```
EEPROM Memory : 4KB (Only Accessible in BASIC)
DC24V Input s: 16 (Port Numbers 8 ~ 23)
High Capacity Relays (10A): 8 (Port Numbers 32 ~ 39)
Analog-To-Digital 10-bit Inputs (0~10V): 4
Analog-To-Digital 10-bit Inputs (0~20mA): 4
```

♦ BASIC I/O Map

Direction Range		Input Voltage	Description	
Input Port	8 ~ 23	0V or 24VDC	1 if input is 24V	
		(20V to 28V is recognized	0 if input is 0V	
		as a logic high)		
Output Port	32 ~ 39	10A Relay Outputs	If 1, Relay is ON	
			If 0, Relay is OFF	
Analog Inputs Ch 0~7 0~3		0~3 (0~20mA)	Use "ADIn(0~7)" to read	
		4~7 (0~10V)	input	

Example)

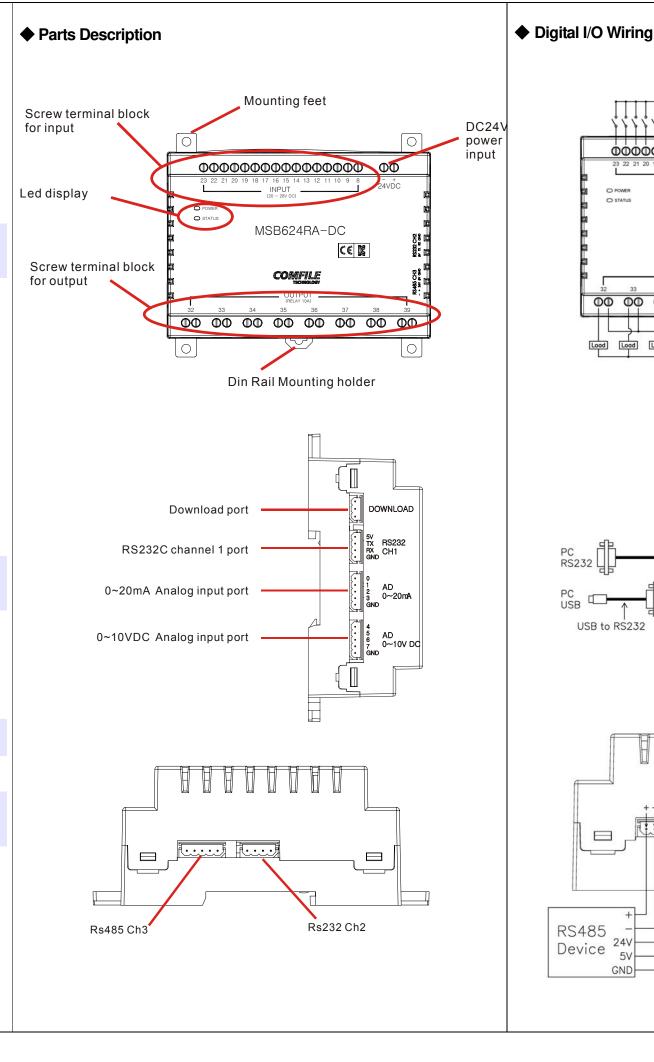
A = In(10) 'Read state of input at port number 10

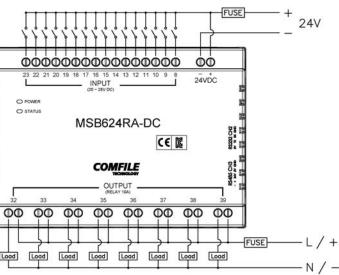
VA = ADIn(0) 'Read analog input from channel 0

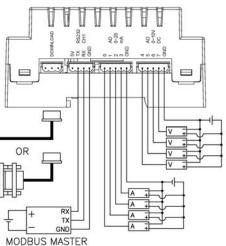
◆ Ladder Logic Memory Map

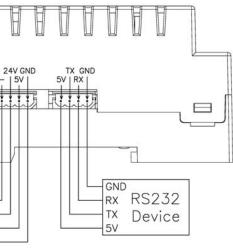
Designation	Range	Unit	Function	
Input Relay P	P0~P31	1 bit	External Input	
Output Relay P	P32~P63	1 bit	Relay, etc on/off control	
Internal Relay M	M0~M511	1 bit	Internal State	
Special Purpose Relay F	F0~F127	1 bit	System Status	
Timer T	T0~T99	16 bit (1 word)	For Timer	
Counter C	C0~C49	16 bit (1 word)	For Counter	
Data Region D	D0~99	16 bit (1 word)	Data Storage	

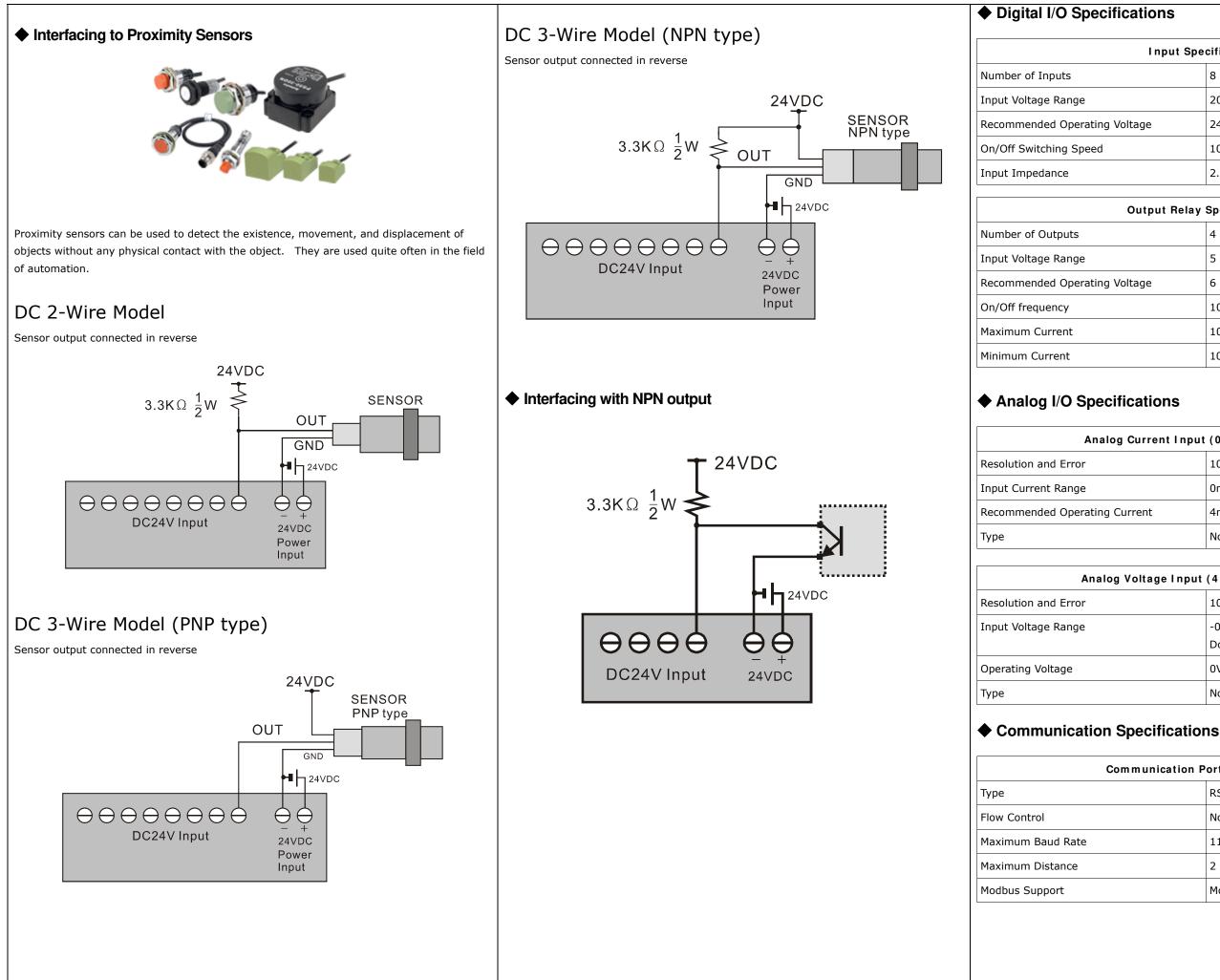
By default, all IO is controlled by BASIC at power on. Ladder Logic must be given permission to use it using the UsePin command.


Usepin 0, In	' From this point on use P0 in Ladder Logic	
Usepin 32, Out	' From this point on, use P32 in Ladder Logic	
Set Ladder On	' Place all UsePin commands before enabling Ladder	


Status LED


The MSB612RA-DC has a status LED that can be used to indicate the product's operating state. It can be controlled in BASIC using via pin 64.


High 64 ' Turn status LED on Low 64 ' Turn status LED off

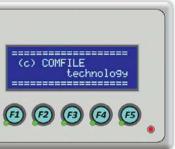

In Ladder Logic, it can be controlled using relay F64.

Input Specifications					
	8				
	20VDC ~ 28VDC				
age	24VDC				
	10ms (Ladder Scan Time is 10ms)				
	2.2kΩ @ 24VDC (Do not connect)				

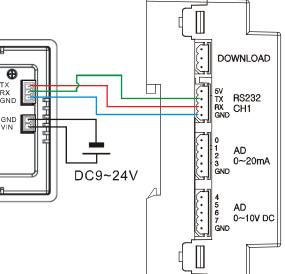
Output Relay Specifications

	4			
	5 ~ 30VDC / 4 ~ 264VAC			
age	6 ~ 27VDC / 6 ~ 240VAC			
	10Hz (10 times per second)			
	10A per relay			
	100mA per relay			

current Input (0 ~ 3) Specification				
	10-bit, +/- 2%			
	0mA ~ 22mA			
rent	4mA ~ 20mA			
	Non-isolated, Built-in LPF			
-				

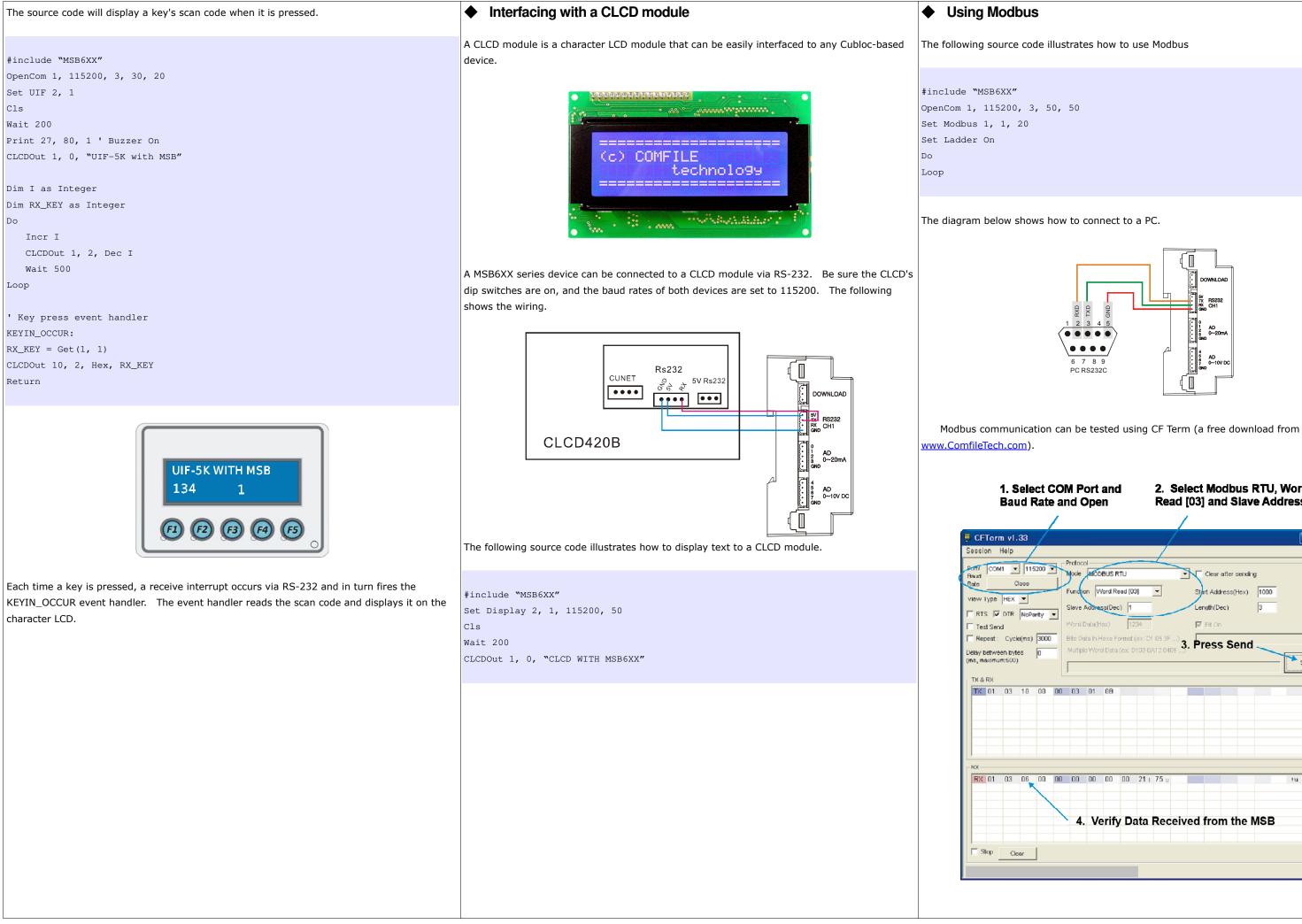

oltage I nput (4 ~ 7) Specifications					
	10-bit, +/- 2%				
	-0.5VDC ~ 10.5VDC Don't connect series resistance				
	0VDC ~ 10VDC				
	Non-isolated, Built-in LPF				

nunication Port Specifications				
	RS-232 (+/- 10VDC)			
	No RTS Flow Control			
	115200			
	2 meters			
	Modbus RTU Slave			


 A Few Simple Examples 1. Blinking the Status LED 	3. Input and Output Control	Interfacing with the UI The UIF-5K is a 5-key character LG
The following program will blink the status LED.	If Input 8 is active, the status LED and relay 32 are turn switched on.	MSB612RA-DC to add a simple us
<pre>#include "MSB6XX" Do High 64 Wait 500 Low 64 Wait 500 Loop Blinking the status LED while using Ladder Logic</pre>	<pre>#include "MSB6XX" Do If In(8) = 1 Then High 64 'Status LED On High 32 'Relay 32 On Else Low 64 'Status LED off Low 32 'Relay 32 Off EndIf Loop</pre>	The following shows how to connect
Billiking the status LED while using Ladder Logic		separately with a 9V~24V supply.
<pre>#include `MSB6XX" Set Ladder On Do _F(64) = 1 Wait 500 _f(64) = 0 Wait 500 Loop</pre>	P8 P32 F64 F_led The same behavior using Ladder Logic You'll find Ladder Logic to be quite easy for handling simple logic.	
Blinking the status LED from ladder logic		
F30 F64 F_640ms F_led 2.Toggle Relay		The following source code will out
Toggle Status LED and relay number 32.		#include "MSB6XX" OpenCom 1, 115200, 3, 30, 20 Set UIF 2, 1
<pre>#include "MSB6XX" Do High 64 'Status LED On High 32 'Relay 32 On Wait 500 Low 64 'Status LED Off Low 32 'Relay 32 off Wait 500 Loop</pre>		Cls Wait 200 Print 27, 80, 1 ' Buzzer On CLCDOut 1, 0, "UIF-5K with MS

UIF-5K

LCD panel that can be used in conjunction with the user interface.


nect the two together. The UIF-5k must be powered у.

utput text to the UIF-5K's display.

MSB″

					-/	, 				
toci de		BUS R	TU	-	4	নি	Clear a	fter send	ing	
ictie	on V	/ord Re	ead (O	3]	•	5	itart Addre	ess(Hex)	1000	-
ve	Addre	ss(Dec	:) 1				ength(De	c)	3	
rd I	Data(H	lex)	12	34		F	7 Bit On			
De tipl	ita in F e VYor	lexa Fi d Data	ormat (ex: C	(ex: D1)103 0/	05 3F N12 0405	3. F	ress	Sen	d	
										Send
3	01	08				_				
								-		
_		00	00	21 (75 u					!u
0	00									
0	00									
0 4.		erif	/ Di	ata	Rece	eiveo	l fron	ו the	MSE	

Analog Input Example

The following source code illustrates how to use analog inputs. Results are displayed in the PC's debug terminal.

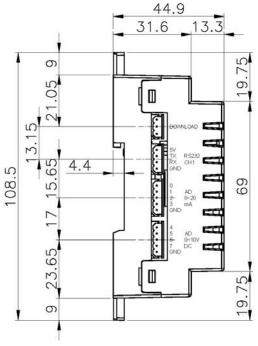
For channels $0 \sim 3$ ($0 \sim 20$ mA).

#include "MSB6XX" Dim AD as Integer Do AD = ADIn(0) 'Read from channel 0 Debug Dec AD, Cr Delay 1000 Loop

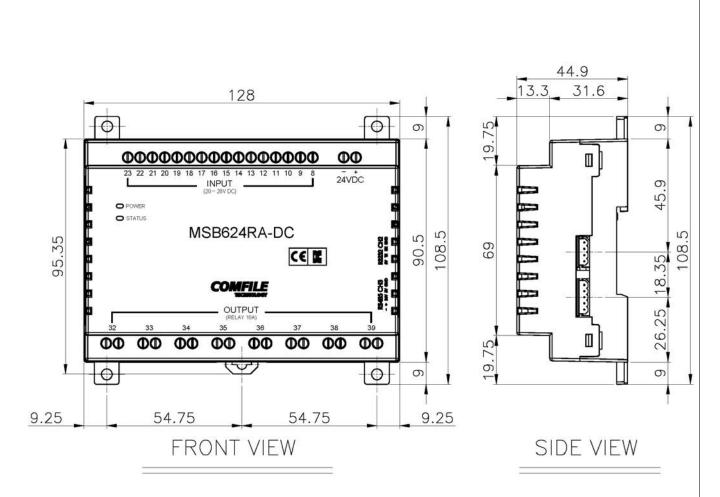
For channels 4 \sim 7 (0 \sim 10VDC).

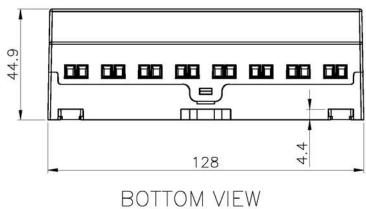
#include ``MSB6XX" Dim AD as Integer Do AD = ADIn(4) 'Read from channel 4 Debug Dec AD, Cr Delay 1000 Loop

Modbus Address


Word Address

Holding/Input Registers					
Function : 3,4,6,16					
Address	Area				
0 ~ 255	D (D0 ~ D255)				
256 ~ 355	Y (Y0 ~ Y99)				
	A/D result :				
	Y20~Y27: 276 ~283				
1000 ~ 1255	T (T0 ~ T255)				
2000 ~ 2255	C (C 0~ C255)				
3000 ~ 3255	WM (WM0 ~ WM255)				


Bit Address


Coil, Input Status	
Function : 1,2,4,15	
Address	Area
0 ~ 127	P (P0 ~ P127)
4096 ~ 6143	M (M0 ~ M2047)

SIDE VIEW

Dimensions

Unit: mm